Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Bo Huang,* Miao-Chang Liu, Hua-Yue Wu, Jin-Chang Ding and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.054$
$w R$ factor $=0.131$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-Ethyl 3-phenyl-2-[(triphenylphosphoranyl-idene)amino]prop-2-enoate

The title compound, $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OP}$, containing four planar ring systems, exists in the Z form. The short C $\cdots \mathrm{O}$ [2.711 (3) \AA] and $\mathrm{C} \cdots \mathrm{N}[2.961$ (3) and 2.997 (3) \AA] intramolecular contacts may indicate the presence of weak intramolecular hydrogen bonds.

Comment

Recently, iminophosphoranes have received increased attention as useful building blocks for the synthesis of nitrogencontaining heterocycles (Molina et al., 1994). The title compound, (I), is an intermediate in the preparation of imidazolinone, which exhibits various biological properties, for example, fungicidal and herbicidal activities (Yang et al., 2004). Some interesting crystal structures involving iminophosphorane groups have been published (Batsanov et al., 1997).

(I)

Compound (I) exists in the Z-isomeric form, as two groups of higher priority are on the same side of the exocyclic $\mathrm{C}=\mathrm{C}$ double bond. The molecule of (I) contains four essentially planar phenyl rings, three of which, C1-C6 (A), C7-C12 (B) and C13-C18 (C), belong to the triphenylphosphine group. The dihedral angles $A / B, A / C$ and B / C are 79.7 (1), 89.7 (1) and 54.7 (1) $)^{\circ}$, respectively.

The short $\mathrm{C} \cdots \mathrm{O}$ and $\mathrm{C} \cdots \mathrm{N}$ intramolecular contacts (Table 1) may indicate the presence of weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Experimental

The title compound was readily synthesized in 82% yield by theStaudinger reaction of ethyl β-azidoacetate with triphenylphosphine at room temperature (Molina et al., 1993). Single crystals of (I) suitable

Received 22 December 2004
Accepted 4 January 2005
Online 15 January 2005
for X-ray data collection were obtained by slow evaporation of a solution in ethanol (m.p. 435-436 K). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 2923, 1668, 1587, 1410, 1232; ${ }^{1} \mathrm{H}$ NMR (chloroform- d, δ, p.p.m.): 8.15-7.25 (m, 20H), $6.72(d, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 3.85(q, 2 \mathrm{H}, s, J$ $=7.1 \mathrm{~Hz}), 0.99(t, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (chloroform- d, δ, p.p.m.): 167.87, 138.23, 136.41, 133.65, 132.46, 132.33, 130.89, 129.34, 128.00, $127.67,125.62,116.41,116.15,77.96,76.53,60.65,13.99 ;{ }^{31} \mathrm{P}$ NMR (chloroform-d, δ, p.p.m.): 7.44 (s).

Crystal data

$\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$
$M_{r}=451.48$
Monoclinic, $P 2_{1} / n$
$a=10.1918$ (9) \AA
$b=17.7185$ (16) \AA
$c=14.1563$ (13) \AA
$\beta=106.000(2)^{\circ}$
$V=2457.4(4) \AA^{3}$
$Z=4$

$$
D_{x}=1.220 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 3745
reflections
$\theta=2.4-24.8^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.35 \times 0.28 \times 0.21 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.944, T_{\text {max }}=0.972$
12947 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.131$
$S=1.12$
4440 reflections
299 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Zhejiang Provincial Technology Project Foundation of China (grant No. 2003 C31026) and the Bureau of Science and Technology of Wenzhou (grant No. G 2004060).

References

Batsanov, A. S., Davidson, M. G., Howard, J. A. K., Lamb, S., Lustig, C \& Price, R. D. (1997). J. Chem. Soc. Chem. Commun. pp. 1211-1212.

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62), SHELXTL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Molina, P., Aller, E., Lopez-Lazaro, A., Alajarin, M, \& Lorenzo, A. (1994). Tetrahedron Lett. 35, 3817-3820.
Molina, P., Pastor, A. \& Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocyclic. Chem., 41, 77-83.

