organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Bo Huang,* Miao-Chang Liu, Hua-Yue Wu, Jin-Chang Ding and Mao-Lin Hu

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.004 Å R factor = 0.054 wR factor = 0.131 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Z)-Ethyl 3-phenyl-2-[(triphenylphosphoranylidene)amino]prop-2-enoate

The title compound, $C_{29}H_{26}N_2OP$, containing four planar ring systems, exists in the Z form. The short C···O [2.711 (3) Å] and C···N [2.961 (3) and 2.997 (3) Å] intramolecular contacts may indicate the presence of weak intramolecular hydrogen bonds.

Received 22 December 2004 Accepted 4 January 2005 Online 15 January 2005

Comment

Recently, iminophosphoranes have received increased attention as useful building blocks for the synthesis of nitrogencontaining heterocycles (Molina *et al.*, 1994). The title compound, (I), is an intermediate in the preparation of imidazolinone, which exhibits various biological properties, for example, fungicidal and herbicidal activities (Yang *et al.*, 2004). Some interesting crystal structures involving iminophosphorane groups have been published (Batsanov *et al.*, 1997).

Compound (I) exists in the Z-isomeric form, as two groups of higher priority are on the same side of the exocyclic C=C double bond. The molecule of (I) contains four essentially planar phenyl rings, three of which, C1–C6 (A), C7–C12 (B) and C13–C18 (C), belong to the triphenylphosphine group. The dihedral angles A/B, A/C and B/C are 79.7 (1), 89.7 (1) and 54.7 (1)°, respectively.

The short $C \cdots O$ and $C \cdots N$ intramolecular contacts (Table 1) may indicate the presence of weak intramolecular $C-H \cdots O$ and $C-H \cdots N$ hydrogen bonds.

Experimental

The title compound was readily synthesized in 82% yield by theStaudinger reaction of ethyl β -azidoacetate with triphenylphosphine at room temperature (Molina *et al.*, 1993). Single crystals of (I) suitable

0280 Huang et al. • C₂₉H₂₆NO₂P

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

for X-ray data collection were obtained by slow evaporation of a solution in ethanol (m.p. 435–436 K). Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 2923, 1668, 1587, 1410, 1232; ¹H NMR (chloroform-*d*, δ , p.p.m.): 8.15–7.25 (*m*, 20H), 6.72 (*d*, 2H, *J* = 7.0 Hz), 3.85 (*q*, 2H, *s*, *J* = 7.1 Hz), 0.99 (*t*, 3H, *J* = 7.1 Hz); ¹³C NMR (chloroform-*d*, δ , p.p.m.): 167.87, 138.23, 136.41, 133.65, 132.46, 132.33, 130.89, 129.34, 128.00, 127.67, 125.62,116.41, 116.15, 77.96, 76.53, 60.65, 13.99; ³¹P NMR (chloroform-*d*, δ , p.p.m.): 7.44 (*s*).

 $D_x = 1.220 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 3745

reflections $\theta = 2.4-24.8^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$

T = 298 (2) K

Block, colourless $0.35 \times 0.28 \times 0.21 \text{ mm}$

Crystal data

$C_{29}H_{26}NO_2P$
$M_r = 451.48$
Monoclinic, $P2_1/n$
a = 10.1918 (9) Å
b = 17.7185 (16) Å
c = 14.1563 (13) Å
$\beta = 106.000 \ (2)^{\circ}$
V = 2457.4 (4) Å ³
Z = 4

Data collection

Bruker APEX area-detector	4440 independent reflections
diffractometer	3764 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.025$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.3^{\circ}$
(SADABS; Bruker, 2002)	$h = -12 \rightarrow 9$
$T_{\min} = 0.944, T_{\max} = 0.972$	$k = -17 \rightarrow 21$
12 947 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0587P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 0.6164P]
$wR(F^2) = 0.131$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
4440 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ \AA}^{-3}$
299 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: none

Table 1

Intramolecular contacts (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C1 - H1 \cdots N1$ $C23 - H23 \cdots O2$	0.93	2.61	2.997 (3) 2 711 (3)	106 107
C29-H29···N1	0.93	2.34	2.961 (3)	124

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $Csp^2 - H = 0.93$ Å, with $U_{iso}(H) = 1.2U_{eq}(C)$, or $Csp^3 - H = 0.96$ Å, with $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge financial support by the Zhejiang Provincial Technology Project Foundation of China (grant No. 2003 C31026) and the Bureau of Science and Technology of Wenzhou (grant No. G 2004060).

References

- Batsanov, A. S., Davidson, M. G., Howard, J. A. K., Lamb, S., Lustig, C & Price, R. D. (1997). J. Chem. Soc. Chem. Commun. pp. 1211–1212.
- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62), SHELXTL and XP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Molina, P., Aller, E., Lopez-Lazaro, A., Alajarin, M, & Lorenzo, A. (1994). Tetrahedron Lett. 35, 3817–3820.

Molina, P., Pastor, A. & Vilaplana, M. J. (1993). *Tetrahedron*, 49, 7769–7778. Sheldrick, G. M. (1997). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.

Yang, F. L., Liu, Z. J., Huang, X. B. & Ding, M. W. (2004). J. Heterocyclic. Chem., 41, 77–83.